Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(g(X), Y)) → F(X, f(g(X), Y))
ACTIVE(g(X)) → ACTIVE(X)
TOP(mark(X)) → PROPER(X)
PROPER(g(X)) → G(proper(X))
PROPER(g(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
F(ok(X1), ok(X2)) → F(X1, X2)
G(mark(X)) → G(X)
ACTIVE(g(X)) → G(active(X))
PROPER(f(X1, X2)) → PROPER(X2)
TOP(ok(X)) → TOP(active(X))
PROPER(f(X1, X2)) → F(proper(X1), proper(X2))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(f(X1, X2)) → F(active(X1), X2)
G(ok(X)) → G(X)
F(mark(X1), X2) → F(X1, X2)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
PROPER(f(X1, X2)) → PROPER(X1)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(g(X), Y)) → F(X, f(g(X), Y))
ACTIVE(g(X)) → ACTIVE(X)
TOP(mark(X)) → PROPER(X)
PROPER(g(X)) → G(proper(X))
PROPER(g(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
F(ok(X1), ok(X2)) → F(X1, X2)
G(mark(X)) → G(X)
ACTIVE(g(X)) → G(active(X))
PROPER(f(X1, X2)) → PROPER(X2)
TOP(ok(X)) → TOP(active(X))
PROPER(f(X1, X2)) → F(proper(X1), proper(X2))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(f(X1, X2)) → F(active(X1), X2)
G(ok(X)) → G(X)
F(mark(X1), X2) → F(X1, X2)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
PROPER(f(X1, X2)) → PROPER(X1)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(g(X), Y)) → F(X, f(g(X), Y))
ACTIVE(g(X)) → ACTIVE(X)
TOP(mark(X)) → PROPER(X)
PROPER(g(X)) → G(proper(X))
PROPER(g(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
F(ok(X1), ok(X2)) → F(X1, X2)
G(mark(X)) → G(X)
PROPER(f(X1, X2)) → PROPER(X2)
ACTIVE(g(X)) → G(active(X))
PROPER(f(X1, X2)) → F(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
ACTIVE(f(X1, X2)) → F(active(X1), X2)
TOP(mark(X)) → TOP(proper(X))
F(mark(X1), X2) → F(X1, X2)
G(ok(X)) → G(X)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
PROPER(f(X1, X2)) → PROPER(X1)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 5 SCCs with 7 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

G(mark(X)) → G(X)
G(ok(X)) → G(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.

G(ok(X)) → G(X)
Used ordering: Combined order from the following AFS and order.
G(x1)  =  G(x1)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Lexicographic path order with status [19].
Precedence:
mark1 > G1

Status:
mark1: multiset
G1: [1]

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

G(ok(X)) → G(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


G(ok(X)) → G(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
G(x1)  =  G(x1)
ok(x1)  =  ok(x1)

Lexicographic path order with status [19].
Precedence:
ok1 > G1

Status:
G1: [1]
ok1: multiset

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(mark(X1), X2) → F(X1, X2)
F(ok(X1), ok(X2)) → F(X1, X2)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


F(ok(X1), ok(X2)) → F(X1, X2)
The remaining pairs can at least be oriented weakly.

F(mark(X1), X2) → F(X1, X2)
Used ordering: Combined order from the following AFS and order.
F(x1, x2)  =  F(x1)
mark(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
ok1: multiset
F1: [1]

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(mark(X1), X2) → F(X1, X2)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


F(mark(X1), X2) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
F(x1, x2)  =  F(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [19].
Precedence:
mark1 > F1

Status:
mark1: multiset
F1: [1]

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(g(X)) → PROPER(X)
PROPER(f(X1, X2)) → PROPER(X2)
PROPER(f(X1, X2)) → PROPER(X1)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(f(X1, X2)) → PROPER(X2)
PROPER(f(X1, X2)) → PROPER(X1)
The remaining pairs can at least be oriented weakly.

PROPER(g(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
g(x1)  =  x1
f(x1, x2)  =  f(x1, x2)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
PROPER1: [1]
f2: multiset

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(g(X)) → PROPER(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(g(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
g(x1)  =  g(x1)

Lexicographic path order with status [19].
Precedence:
g1 > PROPER1

Status:
PROPER1: [1]
g1: multiset

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(g(X)) → ACTIVE(X)
ACTIVE(f(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(g(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(f(X1, X2)) → ACTIVE(X1)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
g(x1)  =  g(x1)
f(x1, x2)  =  x1

Lexicographic path order with status [19].
Precedence:
trivial

Status:
ACTIVE1: [1]
g1: multiset

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
f(x1, x2)  =  f(x1, x2)

Lexicographic path order with status [19].
Precedence:
f2 > ACTIVE1

Status:
ACTIVE1: [1]
f2: multiset

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.

TOP(ok(X)) → TOP(active(X))
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
g(x1)  =  g(x1)
f(x1, x2)  =  f(x1)

Lexicographic path order with status [19].
Precedence:
g1 > mark1 > TOP1
f1 > mark1 > TOP1

Status:
mark1: [1]
f1: [1]
TOP1: [1]
g1: [1]

The following usable rules [14] were oriented:

active(g(X)) → g(active(X))
g(mark(X)) → mark(g(X))
proper(g(X)) → g(proper(X))
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
g(ok(X)) → ok(g(X))
f(mark(X1), X2) → mark(f(X1, X2))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
active(f(X1, X2)) → f(active(X1), X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  x1
g(x1)  =  x1
mark(x1)  =  mark
f(x1, x2)  =  f(x2)

Lexicographic path order with status [19].
Precedence:
f1 > ok1
f1 > mark

Status:
f1: [1]
ok1: [1]
mark: []

The following usable rules [14] were oriented:

active(g(X)) → g(active(X))
g(mark(X)) → mark(g(X))
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
g(ok(X)) → ok(g(X))
f(mark(X1), X2) → mark(f(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
active(f(X1, X2)) → f(active(X1), X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.